Math, asked by riitik7232, 1 month ago

Given 3dy/dx+ 5y^2=sinx.y(0.3)=5 and using a step size of h = 0.3, the value of y(0.9) using Euler's method is most nearly​

Answers

Answered by rushikeshbadgujar567
10

Answer:

Step-by-step explanation:

Answered by PravinRatta
1

Given,

  • equation 3\frac{dy}{dx}+5y^{2}=sinx
  • y(0.3) = 5
  • step size of h = 0.3

To Find,

the value of y(0.9) using Euler's method.

Solution,

as this is given that 3\frac{dy}{dx}+5y^{2}=sinx           (1)

y(0.3)=5

we have to find the value of y(0.9)

using equation (1)

\frac{dy}{dx}=\frac{(sinx-5y^{2)} }{3}                                                 (2)

Euler's method,

x_{0} = 0.3 = y(0.3) , x_{1}= 0.6=y(0.6), x_{2}= 0.9=y(0.9)

y_{n+1} =y_{n} +h f(x_{n}.y_{n})     , here n=0,1,2,3,....    (3)

putting n=1 in equation (3),

y(0.9)= y_{2}=y_{1}+h(x_{1}.y_{1})

         = -7.470445+(0.3)(-92.75146)\\=-7.470445-27.825438\\= -35.295883\\= -35.318 (approx)

Hence the value of y(0.9) is -35.318 (approx).

Similar questions