Math, asked by abhin42, 10 months ago

Given 4 2
-1 1
M = 6I,where M is a matrix and I is a unit matrix of order 2x2.

State the order of matrix M and find the matrix M.

Answers

Answered by pulakmath007
14

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

 \displaystyle\begin{pmatrix} 4 & 2\\  - 1 & 1 \end{pmatrix}  \sf{M = 6I}

where M is a matrix and

I is a unit matrix of order 2x2

TO DETERMINE

  • Order of matrix M

  • The matrix M

CALCULATION

It is given that

 \displaystyle\begin{pmatrix} 4 & 2\\  - 1 & 1 \end{pmatrix}  \sf{M = 6I} \:  \:  \:  \: ...(1)

 \sf{Let \:  \:  A} =  \displaystyle\begin{pmatrix} 4 & 2\\  - 1 & 1 \end{pmatrix}

Then det A = 4 + 2 = 6

 \sf{Since \:   \: \:  det  \: A \ne \: 0}

 \sf{So \:  \: { A}^{ - 1}  \:  \: exists}

Now

 \sf{ adj \: A} =  \displaystyle\begin{pmatrix} 1 &  - 2\\   1 & 4 \end{pmatrix}

So

 \sf{{ A }^{ - 1} } =  \displaystyle   \sf{\frac{adj \:A }{det \:A } } =  \frac{1}{6} \begin{pmatrix} 1 &  - 2\\   1 & 4 \end{pmatrix}

From Equation (1) we get

 \sf{AM = 6I \: }

 \implies \:  \sf{M = {A}^{ - 1} \times   6I \: }

 \implies \: \sf{ M}=  \frac{1}{6} \times 6 \times  \begin{pmatrix} 1 &  - 2\\   1 & 4 \end{pmatrix}   \times \begin{pmatrix} 1 &  0\\   0 & 1 \end{pmatrix}

 \implies \: \sf{ M}=  \begin{pmatrix} 1 &  - 2\\   1 & 4 \end{pmatrix}

RESULT

 \boxed{ \:  \:  \: \sf{ M}=  \begin{pmatrix} 1 &  - 2\\   1 & 4 \end{pmatrix} \:  \:  \:   }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

For a square matrix A and a non-singular matrix B of the same order, the value of det(B^-1 AB)

https://brainly.in/question/23783093

Answered by swati1289
5

Answer:

Let M= [ a b , c d ]

[4 -1 , 2 1] [a b , c d] = 6 [ 1 0 , 0 1 ]

4a + 2b -a+b , 4c +2d ] =[ 6 0, 0 6]

b =a

4a + 2a =6

6a=6

a= 1

4×1+2b =6

4+2b =6

2b =6-4

b = 1

-c+d=0

d=6+c

4c+2(6+c) = 0

4c+12+2c=0

6c=-12

c=-2

4(-2) +2d =0

-8+2d=0

2d=8

d=4

M= [1 1 , -2 4]

order of M = 2×2

HOPE IT HELPED

Attachments:
Similar questions