Given : 4 sin θ= 3 cos θ; find the value of :
(i) sin θ
(ii) cos θ
(iii) cot^2 θ - cosec^2 θ
(iv) 4 cos^2 θ- 3 sin^2θ+ 2
Answers
Answered by
1
Step-by-step explanation:
4 sin θ= 3 cos θ
sin θ/cos θ = 3/4
tanθ= 3/4
hyp=root(3^2+4^2)=root(9+16)=root(25)=5
i) sin θ= 3/5
ii) cos θ=4/5
iii) cot^2 θ - cosec^2 θ= -( cosec^2 θ - cot^2 θ)
= -1
iv)4 cos^2 θ- 3 sin^2θ+ 2 =4(4/5)^2 - 3(3/5)^2 +2
=64/25 - 27/25 +2
=(64-27+50)/25
= 87/25
Similar questions