Given 4 sin theta = 3 cos theta , find the value of :
(i). Sin theta
(ii). Cos theta
(iii). Cot^2 theta - cosec^2 theta
Answers
Answer:sin(they)=3/5
Cos(they)=4/5
iii> -1
Step-by-step explanation:
AnswEr :
Given : 4 sin(θ) = 3 cos(θ)
To Find :
- Sin(θ)
- Cos(θ)
- Cot²(θ) - Cosec²(θ)
⋆ so, we have given identity is -
⇝ 4 sin(θ) = 3 cos(θ)
⇝ sin(θ) / cos(θ) = 3 / 4
⇝ tan(θ) = 3 / 4 = p / b
⠀⠀✡ p = 3 and, b = 4
⋆ we can find out h with Pythagoras -
⇝ h² = p² + h²
⇝ h² = ( 3 )² + ( 4 )²
⇝ h² = ( 9 + 16 )
⇝ h² = 25
⇝ h = √25
⇝ h = 5
_________________________________
1) Sin(θ)
⇒ Sin(θ) = p / h
- Using the Values
⇒ Sin(θ) = 3 / 5
2) Cos(θ)
⇒ Cos(θ) = b / h
- Using the Values
⇒ Cos(θ) = 4 / 5
3) Cot²(θ) - Cosec²(θ)
⇒ Cot²(θ) - Cosec²(θ) = (b / p)² - (h / p)²
⇒ Cot²(θ) - Cosec²(θ) = (4 / 3)² - (5 / 3)²
⇒ Cot²(θ) - Cosec²(θ) = (16 / 9) - (25 / 9)
⇒ Cot²(θ) - Cosec²(θ) = ( 16 - 25 ) / 9
⇒ Cot²(θ) - Cosec²(θ) = - 9 / 9
⇒ Cot²(θ) - Cosec²(θ) = - 1
_________________________________
⋆ Some Information Related to this :
⇀ Sin(θ) = Perpendicular/Height = 1/Csc(θ)
⇁ Cos(θ) = Base/Height = 1/Sec(θ)
⇀ Tan(θ) = Perpendicular/Base = 1/Cot(θ)
⇁ Sin²(θ) + Cos²(θ) = 1
⇀ Sec²(θ) - Tan²(θ) = 1
⇁ Cosec²(θ) - Cot²(θ) = 1