Math, asked by Anonymous, 7 months ago

given ,4cot A= 3,the value of \implies \dfrac{sinA +cosA  }{sinA-cosA}is

a)7
b)2/11
c)1/2
d)1​

Answers

Answered by AdorableMe
7

Answer :-

a) 7

Given :-

The expression -

→ 4cot A = 3

To Find :-

The value of -

\sf{\dfrac{sinA+cosA}{sinA-cosA}}

Solution :-

\sf{4cot A = 3}

\sf{\longrightarrow cotA=\dfrac{3}{4}}

\sf{\longrightarrow \dfrac{cosA}{sinA}=\dfrac{3}{4}}

Let us assume cosA = 3x and sinA = 4x.

\sf{\dfrac{sinA+cosA}{sinA-cosA}=\dfrac{4x+3x}{4x-3x}}

\sf{\implies \dfrac{sinA+cosA}{sinA-cosA}=\dfrac{7x}{x} }

\sf{\implies \dfrac{sinA+cosA}{sinA-cosA}=7}

Therefore, the answer is a) 7.

Answered by Anonymous
95

Given:-

4cotA = 3

To find:-

  \frac{sinA + cosA}{sinA - cosA} =?

Solution:-

4cotA = 3 \\ cotA =  \frac{3}{4}

Now, Base = 3 and Perpendicular = 4

(Hypotenuse)² = (Perpendicular)² + (Base)²

(Hypotenuse)² = 3²+4² = 9 +16 = 25

Hypotenuse = √25 = 5

sinA =  \frac{4}{5}  \\ cosA =  \frac{3}{5}

Now,

 =  &gt;  \frac{sinA + cosA}{sinA - cosA}  =  \frac{ \frac{4}{5}  +  \frac{3}{5} }{ \frac{4}{5}  -  \frac{3}{5} }</p><p> = &gt; \frac{ \frac{7}{5} }{ \frac{1}{5} }   =  \frac{7}{1}

Hope its help uh

Similar questions