Math, asked by arunsharmah4, 4 months ago

Given 5 cos A - 12 sin A = 0, find the value of
sinA+cosA/2cosA-sinA.

(Answer: 17/19)

HOW???​

Answers

Answered by gotoo000612y
52

Analysis

Here we're given that 5cosA-12sinA=0. And we to find the value of \bf{\dfrac{\sin A+\cos A}{2\cos A-\sin A}} And if 5cosA-12sinA=0, then 5cosA=12sinA

\dashrightarrow\rm{5\cos A-12\sin A=0}

\dashrightarrow\rm{5\cos A=12\sin A}

\dashrightarrow\rm{\cos A=\dfrac{12}{5}\sin A}

Given

  • \rm{\cos A=\dfrac{12}{5}\sin A}

  • \rm{\dfrac{\sin A+\cos A}{2\cos A-\sin A}}

To Find

The value of \rm{\dfrac{\sin A+\cos A}{2\cos A-\sin A}}

Answer

\displaystyle\implies\rm{\dfrac{\sin A+\cos A}{2\cos A-\sin A}}

\displaystyle\implies\rm{\dfrac{\sin A+\cfrac{12}{5}\sin A}{2\Big(\cfrac{12}{5}\Big) \sin A-\sin A}}

\displaystyle\implies\rm{\dfrac{\sin A+\cfrac{12}{5}\sin A}{\cfrac{24}{5}\sin A-\sin A}}

\displaystyle\implies\rm{\dfrac{\cfrac{17}{5}\sin A}{\cfrac{19}{5}\sin A}}

\displaystyle\implies\rm{\dfrac{\cfrac{17}{\cancel{5}}{\cancel{\sin A}}}{\cfrac{19}{\cancel{5}}{\cancel{\sin A}}}}

\implies\rm{\dfrac{17}{19}}

{\boxed{\boxed{\implies{\bf{\dfrac{17}{19}\checkmark}}}}}

Hence the value of \displaystyle\rm{\dfrac{\sin A+\cos A}{2\cos A-\sin A}} is \rm\dfrac{17}{19} which is the required answer.

\bigstar\large{\underline{\underline{\bf{Note\leadsto}}}}

Here in step two, I've substituted cos A by sin A. As \displaystyle\rm{\cos A=\dfrac{12}{5}\sin A}

While simplifying \displaystyle\rm{\Big[\sin A+\dfrac{12}{5}\sin A\Big]\:and\:\Big[\dfrac{24}{5}\sin A-\sin A\Big]}the concept of LCM is used \rm{\Big[\dfrac{12}{5}+1=\dfrac{17}{5}\Big]\quad and \quad\Big[\dfrac{24}{5}-1=\dfrac{19}{5}\Big]}

HOPE IT HELPS.

Answered by HearthackerKittu17
4

{\huge\fbox\pink{Q}\fbox\blue{U}\fbox\purple{e}\fbox\green{S}\fbox\red{T}\fbox\orange{I}\fbox{O}\fbox\gray{n}}

●▬▬▬▬๑۩۩๑▬▬▬▬▬●

Given 5 cos A - 12 sin A = 0, find the value of

sinA+cosA/2cosA-sinA.

●▬▬▬▬๑۩۩๑▬▬▬▬▬●

\huge\boxed{\fcolorbox{black}{red}{ƛnsweR}}

Explanation:

●▬▬▬▬๑۩۩๑▬▬▬▬▬●

\displaystyle\implies\rm{\dfrac{\sin A+\cfrac{12}{5}\sin A}{2\Big(\cfrac{12}{5}\Big) \sin A-\sin A}}

\displaystyle\implies\rm{\dfrac{\sin A+\cfrac{12}{5}\sin A}{\cfrac{24}{5}\sin A-\sin A}}

\displaystyle\implies\rm{\dfrac{\cfrac{17}{5}\sin A}{\cfrac{19}{5}\sin A}}

\displaystyle\implies\rm{\dfrac{\cfrac{17}{\cancel{5}}{\cancel{\sin A}}}{\cfrac{19}{\cancel{5}}{\cancel{\sin A}}}}

{\boxed{\boxed{\implies{\bf{\dfrac{17}{19}\checkmark}}}}}

\bigstar\large{\underline{\underline{\bf{Note\leadsto}}}}

Note:

Here in step two, I've substituted cos A by sin A. As \displaystyle\rm{\cos A=\dfrac{12}{5}\sin A}

the concept of LCM is used

\rm{\Big[\dfrac{12}{5}+1=\dfrac{17}{5}\Big]\quad and \quad\Big[\dfrac{24}{5}-1=\dfrac{19}{5}\Big]}

●▬▬▬▬๑۩۩๑▬▬▬▬▬●

\rm\underline\purple{Hope \: its \: help \: you \:☺}

\huge\boxed{\fcolorbox{black}{orange}{Brƛinlist\: Please ✔}}

\huge \boxed {\underline {\frak \red {★Khushi★}}}

\huge{\large\blue{\mathbb\fcolorbox{red}{black}{⛄Fʀᴏᴍ⛄}}}

{\mathbb{\colorbox {darkblue} {\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {lime}{\boxed{\boxed{\boxed{\boxed{\boxed{\colorbox {aqua} {@HearthackerKittu17}}}}}}}}}}}}}}}

Similar questions