Given 5 Cos A - 12 Sin A = 0 , then evaluate the value of Sin A+Cos A by 2 Cos A− Sin A
Answers
Answered by
2
If 5 cosA-12sinA=0, what is the value of sinA+cosA/2cosA-sinaA?
Let y=(sinA + cosA)/(2cosA-sinA)
Taking CosA as common from both numerator and denominator
y=[cosA((sinA/cosA)+(cosA/cosA))] /[cosA(2(cosA/cosA)-(sinA/cosA))]
Cancelling cosA and as we know sinA/cosA=tanA
So,
y=(tanA+1)/(2-tanA)
And we know
5cosA-12sinA=0
5cosA =12sinA
5=12[(sinA/cosA)]
TanA=5/12
Substitute the value of tanA in y
we get
y=(1+(5/12))/(2-(5/12))
y=[(12+5)/12]/[(12*2–5)/12]
Cancelling 12
y=17/(24–5)
y=17/19
Similar questions