Math, asked by atharvpa2006, 10 months ago

given( a^2- 7a+ 1)=0 find a^3+1/a^3​

Answers

Answered by Cosmique
6

Given :-

  • a² - 7 a + 1 = 0

To find :-

  • a³ + 1 / a³

Solution :-

given that

a² - 7 a + 1 = 0

a² + 1 = 7 a  ......eqn (1)

Now,

Let us firstly find

\longrightarrow\tt{a+\frac{1}{a} }

so, Taking LCM

\longrightarrow\tt{\frac{a^2+1}{a}}

using eqn (1)

\longrightarrow\tt{\frac{7a}{a}=7}

Hence,

\mathrm{a+\frac{1}{a}=7}  ........ eqn (2)

Now,

we have to find

\implies\tt{a^3+\frac{1}{a^3}}

as we know the identity

x³ + y³ = (x + y)³ - 3 x y(x+y)

\implies\tt{(a+\frac{1}{a})^3-3(a)(\frac{1}{a})(a+\frac{1}{a}}

\implies\tt{(a+\frac{1}{a})^3-3(7)}

using eqn (2)

\implies\tt{(7)^3-3=343-3(7)=322}

Hence,

\boxed{\boxed{\bf{a^3+\frac{1}{a^3}=322}}}

Answered by tahseen619
5

322

Step-by-step explanation:

Given:

a²- 7a + 1 = 0

To find:

 {a}^{3}  +  \dfrac{1}{ {a}^{3} }

Solution:

  {a}^{2} - 7a + 1 = 0 \\  \\  {a}^{2} + 1 = 7a \\  \\ [\text{Dividing Both side from (a) I get}] \\  \\  a +  \frac{1}{a}  = 7 \:  \:   (1)  \\  \\ [\text{Clubbing both side }]  \\  \\   {(a +  \frac{1}{a} )}^{3}  =  {(7)}^{3}  \\  \\  {a}^{3} +  \frac{1}{ {a}^{3} }   + 3.a. \frac{1}{a}(a +  \frac{1}{a}  ) = 343 \\  \\ {a}^{3} +  \frac{1}{ {a}^{3} }   + 3(7) = 343 \\  \\  {a}^{3} +  \frac{1}{ {a}^{3} }  = 343 - 21 \\  \\{a}^{3} +  \frac{1}{ {a}^{3} }  = 322

The required answer is 322

Formula Used

 {(x + y)}^{3}={x}^{3}+{y}^{3}+ 3xy(x + y) \\ \\(x - y)^{3}={x}^{3}-{y}^{3}- 3xy(x - y)

Similar questions