Math, asked by syudkovitch20, 11 months ago

Given a^{2} +b^{2}=256, ab=33
Find (a+b)^2
Find (a-b)^2

Answers

Answered by Anonymous
20

Answer :

  • value of (a+b)² is 322.
  • value of (a-b)² is 190.

Explanation :

a² + b² = 256

ab = 33

(a+b)² = ?

(a-b)² = ?

We know that,

(a+b)² = a² + b² + 2ab

Putting the values,

=> (a+b)² = 256 + (2×33)

=> (a+b)² = 256 + 66

=> (a+b)² = 322

Hence, value of (a+b)² is 322.

___________________

We also know that,

(a-b)² = a² + b² - 2ab

=> (a-b)² = 256 - (2×33)

=> (a+b)² = 256 - 66

=> (a-b)² = 190

Hence, value of (a-b)² is 190.

Answered by Anonymous
3

 \huge \boxed{ \fcolorbox{cyan}{red}{Answer : }}

Given

Given a^{2} +b^{2}=256, ab=33

Find (a+b)^2

Find (a-b)^2

 \sf{ {a}^{2} + {b}^{2} = 256}

 \sf{ab = 33}

  \sf{(a +  {b)}^{2} =}

 \rm{formula}

 \sf{(a +  {b)}^{2} =  {a}^{2} +  {b}^{2} + 2ab}

then

 \rm{(a +  {b)}^{2} = 256 + (2 \times 33)}

 \rm{(a +  {b)}^{2} = 256 + 66}

 \rm{(a +  {b)}^{2} = 322}

 \bf{ \huge{ \boxed{ \red{ \tt{ \green{value \: of \: (a +  {b) }^{2} =322 \: }}}}}}

then

 \sf{(a -  {b}^{2}) =  {a}^{2} +  {b}^{2} - 2ab}

 \sf{(a -  {b)}^{2} = 256 - (2 \times 33)}

 \sf{(a -  {b)}^{2} = 256 - 33}

 \sf{(a -  {b)}^{2} = 190}

so...

value of (a-b)² is 190.

Answer

value of (a+b)² is 322.

value of (a-b)² is 190.

Similar questions