Math, asked by kondachary73, 11 months ago

given a=2,d=8,Sn=90​

Answers

Answered by laksiya08
1

Answer:

Sn = n/2(2a + (n-1)d)

90 = n/2(4+(n-1)8)

180=n(4+8n-8)

180 = 8n^2 - 4n

8n^2-4n-180=0

by solving this quadrti equation you will get the answer.

if you want me to solve the equation too then inform me through comments.

Hope it helped you

Answered by Anonymous
3

Answer:-

The sum of n terms of an AP is given by :

\small\sf{Sn=\frac{n}{2}(2a+(n-1)d)}

\small\sf{90=\frac{n}{2}(2(2)+(n-1)8)}

\small\sf{90=\frac{n}{2}(4+(n-1)8)}

\small\sf{90=\frac{n}{2}(8n-4)}

\small\sf{90={4n}^{2}-2n}

\small\sf{{2n}^{2}-n-45=0}

\small\sf{{2n}^{2}-10n+9n-45=0}

\small\sf{2n(n-5)+9(n-5)=0}

\small\sf{(2n+9)(n-5)=0}

\small\sf{n-5=0}

\small\sf{n=5}

━━━━━━━━━━━━━━━

\small\sf{an=a+(n-1)d}

\small\sf{a5=2+(5-1)(8)}

\small\sf{2+32}

\small\sf{34}

\small\sf{an=34}

Similar questions