Math, asked by smnhn1914, 5 days ago

given , a+b=12 ,ab=32 then prove that , (a+2b)^2 - 5b^2 = 176

Answers

Answered by sakshisharma2718
1

Step-by-step explanation:

   {(a + 2b)}^{2}  - 5 {b}^{2}  = 176 \\  {a}^{2}  +  {(2b)}^{2}  + 2 \times 2b \times a - 5 {b}^{2}  = 176 \\   {a}^{2}  + 4 {b}^{2}  - 5 {b}^{2}  + 4ab = 176 \\  {a}^{2}  -  {b}^{2}  + 4 \times 32 = 176 \\  {a }^{2}  -  {b}^{2}  = 176 - 128 \\ (a + b)(a - b) = 48 \\ (a - b) =  \frac{48}{12}  \\ (a - b) = 4

Similar questions