Given a+b=7 and a–b=3, find: 3^a÷3^b
Answers
Answered by
7
Answer:
27
Step-by-step explanation:
a + b = 7 ...( 1 )
a - b = 3 ...( 2 )
Adding both equations :
= > a + b + a - b = 7 + 3
= > 2a = 10
= > a = 5
Hence,
a - b = 3
= > 5 - b = 3
= > 5 - 3 = b = 2
Thus,
3^a / 3^b
= > 3^5 / 3^2
= > 243 / 9
= > 27
This could also be solved using the properties of exponents ; 3^a / 3^b => 3^( a - b ) => 3^3 => 27
Answered by
4
Given:
a + b = 7 and a - b = 3.
To Find:
3^a / 3^b
Solution:
a + b = 7______(1)
a - b = 3______(2)
On adding both the equations we get,
a + b + a - b = 7 + 3
2a = 10
a = 10/2
a = 5
Substituting the value of a in equation 1 we get,
5 + b = 7
or b = 7 - 5
=> b = 2
Now, 3^a / 3^b = 3^5 / 3^2
= 243/9
= 27
Hence, the value of 3^a / 3^b is 27.
Similar questions
Computer Science,
4 months ago
Math,
9 months ago
English,
9 months ago
Science,
1 year ago
Physics,
1 year ago