Given a+b+c=6 and ab+bc+ac=11 then find the value of a³+b³+c³-3abc
Answers
Answered by
38
To Find :
- we need to find the value of a³+b³+c³-3abc.
Solution :
- a + b + c = 6
- ab + bc + ca = 11
- a³+b³+c³-3abc = ?
We know that,
- a³+ b³+ c³- 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
We have value of (a + b + c) and ab + bc + ca so firstly we should find the Value of a² + b² + c².
As we know that,
›› (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
›› a² + b² + c² = (a + b + c)² -2( ab + bc + ca )
›› a² + b² + c² = (6)² - 2 (11)
›› a² + b² + c² = 35 - 22
›› a² + b² + c² = 13
Now,
a³+ b³+ c³- 3abc = (a + b + c)(a² + b² + c² - ab - bc - ca)
›› a³+ b³+ c³- 3abc = 6[13 -(11)]
›› a³+ b³+ c³- 3abc = 6 (13 - 11)
›› a³+ b³+ c³- 3abc = 6 × 2
›› a³+ b³+ c³- 3abc = 12
Hence,
- Value of a³+ b³+ c³- 3abc is 12 .
━━━━━━━━━━━━━━━━━━━━━━━━━
Answered by
12
✷
✷
✷
We know that,
______________________________
Now, we know that,
Similar questions