Given € = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s},
P = {b, e, c, j, l, m, n}, R = {c, i, l, m, n, o, s} and S= {c, e, k, n, q, r}.
Determine the following (all work must be shown):
i. (PٮS)'
ii. (P ٮ R ٮ S)'
iii. (P ٮ S)'∩(P ٮ R)
iv. (R ٮ S)'∩ (P ٮ R)
sorry, maybe symbol have difrence
Answers
Answer:
P U S = { b,e,c,k,j,l,m,n,q,r}
P U R U S = { b,e,c,j,l,m,n,I,o,s,k,q,r}
plz mark as the brainliest!!!
Step-by-step explanation:
Given :-
€ = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s},
P = {b, e, c, j, l, m, n},
R = {c, i, l, m, n, o, s}
S= {c, e, k, n, q, r}.
To find :-
Determine the following:
i. (PٮS)'
ii. (P ٮ R ٮ S)'
iii. (P ٮ S)'∩(P ٮ R)
iv. (R ٮ S)'∩ (P ٮ R)
Solution:-
Given sets are :
€ = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s},
P = {b, e, c, j, l, m, n},
R = {c, i, l, m, n, o, s}
S= {c, e, k, n, q, r}.
i)(PUS)':-
We know that (PUS)' = € - (PUS)
P U S = {b, e, c, j, l, m, n} U {c, e, k, n, q, r}
=> PUS = {b, c, e, j, k, l, m, n, q, r}
Now , (PUS)'
=> € - (PUS)
=> {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s} - {b, c, e, j, k, l, m, n, q, r}
=> (PUS )' = { a, d, f, g, h, i, o, p, s }
ii) (P U R U S)' :-
We know that (P U R U S)' = € - (P U R U S)
PUR = {b, e, c, j, l, m, n} U {c, i, l, m, n, o, s}
=> PUR = { b, c, e, i, j, k, l, m, n, o, s }
and
PURUS
= { b, c, e, i, j, k, l, m, n, o, s } U {c, e, k, n, q, r}
=> { b, c, e, i, j, k, l, m, n, o, q, r, s }
Now,
(P U R U S)' = € - (P U R U S)
=> {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s} -{ b, c, e, i, j, k, l, m, n, o, q, r, s }
=> (P UR U S)' = { a, d, f, g, h }
iii. (P U S)'∩(P U R):-
We have ,
(PUS)' = { a, d, f, g, h, i, o, p, s }
PUR = { b, c, e, i, j, k, l, m, n, o, s }
Now ,
(P U S)'∩(P U R) =
=>{a, d, f, g, h, i, o, p, s} ∩ {b, c, e, i, j, k, l, m, n, o, s}
=> (P U S)'∩(P U R) = {i, o, s }
iv) (R U S)'∩ (P U R):-
We know that (RUS)' = €- (RUS)
RUS = {c, i, l, m, n, o, s} U {c, e, k, n, q, r}
=> RUS ={c, e, i, j, k, l, m, n, o, q, r, s }
Now , (RUS)' = €- (RUS)
=> {a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s} - {c, e, i, j, k, l, m, n, o, q, r, s }
=> (RUS)' = {a, b, d, f, g, h, p }
We have
PUR = { b, c, e, i, j, k, l, m, n, o, s }
Now,
(R U S)'∩ (P U R)
=> {a, b, d, f, g, h, p}∩{b,c,e, i, j, k, l,m,n,o,s}
=>(R U S)'∩ (P U R) = { b }
Answer:-
i)(PUS )' = { a, d, f, g, h, i, o, p, s }
ii)(P UR U S)' = { a, d, f, g, h }
iii)(P U S)'∩(P U R) = {i, o, s }
iv)(R U S)'∩ (P U R) = { b }
Used formulae:-
If A and B are two non -empty sets then,
- The set of all elements in either A or in B or in both A and B is called Union of A and B , it is denoted by AUB.
- The set of all common elements in both A and B is called Intersectionof A and B , it is denoted by A∩B.
- If the Universal set is € then A' = €-A
- B' = €-B
- (AUB)' = €-(AUB)
- (A∩B)' = €-A∩B