Given , a circle with a centre O.BD=OD abd CD perpendicular to AB . Find angle CAB and angle BCD
Answers
Question:
Given , a circle with a centre O. BD = OD and CD perpendicular to AB . Find angle CAB and angle BCD.
*See attachment for the original drawing.
Solution:
ΔOBD is an equilateral triangle
Proof:
Given that OB = BD
and OB = OD (both are radius)
⇒ OB = BD = OD
⇒ ΔOBD is an equilateral triangle
Find ∠AOD:
Angles on a straight line is 180º
∠AOD = 180 - 60
∠AOD = 120º
Find ∠ACD:
Angle at the centre is twice the angle at the circumference
∠ACD = 1/2 ∠AOD
∠ACD = 1/2 (120)
∠ACD = 60º
Find ∠AEC:
Given CD ⊥AB
∠AEC = 90º
Find ∠CAB:
Sum of angles in the Δ ACD = 180º
∠CAB = 180 - 90 - 60
∠CAB = 30º
Find ∠ACB:
Angle of triangle at the semicircle = 90º
∠CAB = 90º
Find ∠CBA:
Sum of angles in the Δ ACB = 180º
∠CBA = 189 - 90 - 30
∠CBA = 60º
Find ∠CBD:
∠CBD = ∠CBA + ∠ABD
∠CBD = 60 + 60
∠CBD = 120º
Find ∠BCD:
Δ BCD is an isosceles triangle
∠BCD = (180 - 120) ÷ 2
∠BCD = 30º
Answer: (A) ∠CAB = 30º (B) ∠BCD = 30º