Math, asked by riyassareena1975, 9 months ago

Given a GP with a=729 and 7th term =64 find the 10 terms​

Answers

Answered by Anonymous
8

Answer:

\sf{The \ first \ ten \ terms \ of \ the \ G.P. \ are}

\sf{729, \ 486, \ 324, \ 216, \ 144, \ 96, \ 64, \ 42.67,}

\sf{28.44, \ and \ 16.29 \ respectively. }

Given:

\sf{In \ a \ G.P.}

\sf{a=729 \ and \ a_{7}=64}

To find:

\sf{Ten \ terms \ of \ the \ G.P.}

Solution:

\boxed{\sf{a_{n}=ar^{n-1}}}

\sf{\therefore{a_{7}=ar^{7-1}}}

\sf{\therefore{64=729\times \ r^{6}}}

\sf{\therefore{r^{6}=\dfrac{64}{729}}}

\sf{\therefore{r^{6}=(\dfrac{2}{3})^{6}}}

\sf{\therefore{r=\dfrac{2}{3}}}

\sf{a_{1}=729,}

\sf{a_{2}=ar=729\times\dfrac{2}{3}=486,}

\sf{a_{3}=ar^{2}=729\times(\dfrac{2}{3})^{2}=324,}

\sf{a_{4}=ar^{3}=729\times(\dfrac{2}{3})^{3}=216,}

\sf{a_{5}=ar^{4}=729\times(\dfrac{2}{3})^{4}=144,}

\sf{a_{6}=ar^{5}=729\times(\dfrac{2}{3})^{5}=96,}

\sf{a_{7}=ar^{6}=729\times(\dfrac{2}{3})^{6}=64,}

\sf{a_{8}=ar^{7}=729\times(\dfrac{2}{3})^{7}=42.67,}

\sf{a_{9}=ar^{8}=729\times(\dfrac{2}{3})^{8}=28.44,}

\sf{a_{10}=ar^{9}=729\times(\dfrac{2}{3})^{9}=16.29}

\sf\purple{\tt{\therefore{The \ first \ ten \ terms \ of \ the \ G.P. \ are}}}

\sf\purple{\tt{729, \ 486, \ 324, \ 216, \ 144, \ 96, \ 64, \ 42.67,}}

\sf\purple{\tt{28.44, \ and \ 16.29 \ respectively. }}

Similar questions