Math, asked by tokaians, 1 year ago

Given A is an acute angle and cosec A =root over 2 find the value of 2sin^2 + 3cot^2/tan^2 A - cos^2 A

Answers

Answered by TPS
68
A is acute and cosec A = √2
⇒ A = 45°

 \frac{2\ sin^2A+3\ cot^2A}{tan^2A-cos^2A}\\ \\ =  \frac{2\ sin^245^0+3\ cot^245^0}{tan^245^0-cos^245^0}\\ \\ = \frac{2 \times (1/ \sqrt{2})^2 +3 \times (1)^2}{(1)^2-(1/ \sqrt{2})^2 }\\ \\ = \frac{2 \times (1/2)+3}{1-(1/2)}\\\\= \frac{1+3}{1/2}\\\\= \frac{4}{1/2}\\\\=\boxed{8}
Answered by guptasingh4564
28

The value of \frac{2sin^{2}A+3cot^{2}A}{tan^{2}A-cos^{2}A} is 8

Step-by-step explanation:

Given,

A is an acute angle and cosecA=\sqrt{2}

Find the value of \frac{2sin^{2}A+3cot^{2}A}{tan^{2}A-cos^{2}A}=?

cosecA=cosec45

A=45

\frac{2sin^{2}A+3cot^{2}A}{tan^{2}A-cos^{2}A}

Plug the value of A,

=\frac{2sin^{2}45+3cot^{2}45}{tan^{2}45-cos^{2}45}

=\frac{2(\frac{1}{\sqrt{2} }) ^{2}+3(1)^{2}}{(1)^{2}-(\frac{1}{\sqrt{2} }) ^{2}}

=\frac{2\times \frac{1}{2}+3 }{1-\frac{1}{2} }

=\frac{1+3}{\frac{1}{2} }

=\frac{4}{\frac{1}{2} }

=8

So, The value of \frac{2sin^{2}A+3cot^{2}A}{tan^{2}A-cos^{2}A} is 8

Similar questions