Math, asked by aadyaa64, 2 months ago

Given a line segment AB joining the points A (-4, 6) and B (8, -3). Find:
(i) the ratio in which AB is divided by the y-axis.
(ii) find the coordinates of the point of intersection.

Answers

Answered by Anonymous
101

Answer:

{ \large{ \pmb{ \sf{★Given... </p><p>}}}}

A(-4, 6)

B(8, -3)

{ \large{ \pmb{ \sf{★To  \: Find... </p><p>}}}}

(i) The ratio in which AB is divided by the y-axis.

(ii) Find the coordinates of the point of intersection.

{ \large{ \pmb{ \sf{★ Solution...}}}}

(I) :

By using section formula:

 \boxed{ \sf{ \bigg( \frac{m x_{2} + n  x_{1}}{m + n},  \frac{my_{2} + ny_{1}}{m + n}  \bigg)}}

A(-4 , 6) = (x1, y1)

B(8, -3) = (x2, y2)

The equation of your axis is (0, y)

By substituting,

{ \implies{ \sf{ \bigg( \frac{m(8) + n( - 4)}{m + n} ,  \frac{m( - 3) + n(6)}{m + n}  \bigg) =  (0, y) }}} \\

  \: { \implies{ \sf{ \bigg( \frac{8m - 4n}{m + n} ,   \frac{ - 3m + 6n}{m + n} \bigg) = (0, y)}}} \\

{ \implies{ \sf{ \frac{8m - 4n}{m + n}  = 0}}} \\

{ \implies{ \sf{8m - 4n = 0}}}

{ \implies{ \sf{8m = 4n}}}

{ \implies{ \sf{ \frac{m}{n} =  \frac{4}{8} =  \frac{1}{2}   }}} \\

{ \implies{ \bf{m: n = 1 :2}}}

_________________________________

(ii) :

By using section formula substitute m and n values:

{ \implies{ \sf{ \bigg( \frac{1(8) + 2( - 4)}{1 + 2} , \frac{1( - 3) + 2(6)}{1 + 2}  \bigg)}}} \\

 \: { \implies{ \sf{ \bigg( \frac{8 + ( - 8)}{3} ,  \frac{ - 3 + 12}{3} \bigg)}}} \\

 \: { \implies{ \sf{ \bigg( \frac{0}{3} ,  \frac{9}{3} \bigg)}}} \\

 \: { \implies{ \sf{ (0,  3)}}} \\

Therefore,

(I) 1 : 2 the ratio in which AB is divided by the y-axis.

(ii) (0, 3) are the coordinates of the point of intersection.

Answered by barani79530
23

Step-by-step explanation:

please mark as best answer and thank me

Attachments:
Similar questions