Given a number n, write a program to find the sum of the largest prime factors of each of nine consecutive numbers starting from n. G(n) = f(n) + f(n+1) + f(n+2) + f(n+3) + f(n+4) + f(n+5) + f(n+6) + f(n+7) + f(n+8)
Answers
Given a number n, write a program to find the sum of the largest prime factors of each of nine consecutive numbers starting from n.
Explanation:
Python Program
def find_factors(num):
#Accepts a number and returns the list of all the factors of a given number
factors = []
for i in range(2,(num+1)):
if(num%i==0):
factors.append(i)
return factors
def is_prime(num, i):
#Accepts the number num and num/2 --> i and returns True if the number is prime ,else returns False
if(i==1):
return True
elif(num%i==0):
return False;
else:
return(is_prime(num,i-1))
def find_largest_prime_factor(list_of_factors):
large=[]
for i in list_of_factors:
if is_prime(i,i//2)==True:
large.append(i)
return max(large)
#Accepts the list of factors and returns the largest prime factor
def find_f(num):
#Accepts the number and returns the largest prime factor of the number
f=find_factors(num)
l=find_largest_prime_factor(f)
return l
def find_g(num):
#Accepts the number and returns the sum of the largest prime factors of the 9 consecutive numbers starting from the given number
sum=0
consicutive=[i for i in range(num,num+9)]
for i in consicutive:
largest_prime_factor=find_f(i)
sum=sum+largest_prime_factor
return sum
#call function
print(find_g(10))
Output
66