Math, asked by rajkadampbn, 9 months ago

given A.P = 212 ,227,242,257,.........,365.how many terms are there in an A.P​

Answers

Answered by BrainlyPopularman
13

CORRECT QUESTION :

Given A.P = 212 ,227,242,257,.........,362. how many terms are there in an A.P ?

GIVEN :

• An A.P. series 212 , 227 , 242 , 257 ,......., 362

TO FIND :

Total number of terms in A.P. ?

SOLUTION :

• We know that nth term –

 \bf \implies \large{ \boxed{ \bf {T_n = a + (n-1)d}}}

• Here –

 \bf  \:  \:  \: {\huge{.}} \:  \:  \: a = 212

 \bf  \:  \:  \: {\huge{.}} \:  \:  \: d =227 -  212 = 15

 \bf  \:  \:  \: {\huge{.}} \:  \:  \: T_n =362

 \bf  \:  \:  \: {\huge{.}} \:  \:  \:n =total \:  \: terms

• Now put the value –

 \bf \implies 362 = 212+ (n-1)(15)

 \bf \implies 362- 212 =  (n-1)(15)

 \bf \implies 150 =  (n-1)(15)

 \bf \implies (n-1) =  \cancel\dfrac{150}{15}

 \bf \implies (n-1) = 10

 \bf \implies n= 10 + 1

 \bf \implies \large{ \boxed{ \bf n= 11}}

Answered by Anonymous
17

♔ Answer ♔

Given:

✰ AP = 212, 227, 242, 257,..........,362.

✰ a = 212

✰ d = 227 - 212 = 15

✰ aₙ = 362

Assuming:

✫ Let the total no. of terms be n.

Formula:

✫ aₙ = a + (n-1) d

Solution:

⇢ 362 = 212 + (n-1)15

⇢ 362-212 = 15(n-1)

⇢ 150 = 15(n-1)

⇢ 10 = n-1

⇢ n = 10+1

⇢ n = 11

Total number of terms = 11

Similar questions