Math, asked by jayalakshmi77, 1 month ago

given
a/q-r= b/r-p=y/p-q
prove
a+b+y=0
pa+qb+ry=0​

Answers

Answered by MrImpeccable
15

ANSWER:

Given:

  • a/(q-r) = b(r-p) = y(p-q)

To Prove:

  • a + b + y = 0
  • pa + qb + ry = 0

Solution:

We are given that,

\implies\dfrac{a}{q-r}=\dfrac{b}{r-p}=\dfrac{y}{p-q}

Let us assume, that these all are equal to a constant k. So,

\implies\dfrac{a}{q-r}=\dfrac{b}{r-p}=\dfrac{y}{p-q}=k

So,

\implies\dfrac{a}{q-r}=k

\implies a=k(q-r)- - - - (1)

\implies\dfrac{b}{r-p}=k

\implies b=k(r-p)- - - - (2)

\implies\dfrac{y}{p-q}=k

\implies y=k(p-q)- - - - (3)

Now, for the first proof, we will add (1), (2) and (3).

So,

\implies a+b+y=k(q-r)+k(r-p)+k(p-q)

\implies a+b+y=k(q-r+r-p+p-q)

\implies a+b+y=k[(q\!\!\!/-q\!\!\!/)+(r\!\!\!/-r\!\!\!/)+(p\!\!\!/-p\!\!\!/)]

\implies a+b+y=k(0)

\implies\bf a+b+y=0

HENCE PROVED!!

\\

Now, for the second proof, we'll multiply (1) with p, (2) with q & (3) with r.

So,

\hookrightarrow pa=pk(q-r)

\implies pa=k(pq-pr)- - - - (4)

\hookrightarrow qb=qk(r-p)

\implies qb=k(qr-qp)- - - - (5)

\hookrightarrow ry=rk(p-q)

\implies ry=k(rp-rq)- - - - (6)

Adding (4), (5) and (6),

\implies pa+qb+ry=k(pq-pr)+k(qr-qp)+k(rp-rq)

\implies pa+qb+ry=k(pq-pr+qr-qp+rp-rq)

\implies pa+qb+ry=k(pq-pr+qr-pq+pr-qr)

\implies pa+qb+ry=k[(pq\!\!\!\!\!/\:-pq\!\!\!\!\!/\:)+(qr\!\!\!\!\!/\:-qr\!\!\!\!\!/\:)+(rp\!\!\!\!\!/\:-rp\!\!\!\!\!/\:)]

\implies pa+qb+ry=k(0)

\implies\bf pa+qb+ry=0

HENCE PROVED!!

Similar questions