Math, asked by vipulchab3414, 1 year ago

Given, A =  A= \left[\begin{array}{ccc}2&1\\0&-2\end{array}\right] B = \left[\begin{array}{ccc}4&1\\-3&-2\end{array}\right] and C = \left[\begin{array}{ccc}-3&-2\\-1&4\end{array}\right] , find A² + AC – 5B.

Answers

Answered by Niharika17703
0

Answer:


Step-by-step explanation:




Hope it works !!!

Attachments:
Answered by hukam0685
0
Solution:

 A= \left[\begin{array}{ccc}2&1\\0&-2\end{array}\right]

 A^{2}= \left[\begin{array}{ccc}2&1\\0&-2\end{array}\right] \times \left[\begin{array}{ccc}2&1\\0&-2\end{array}\right]

 A^{2}= \left[\begin{array}{ccc}4+0&2-2\\0-0&2+2\end{array}\right]
 A^{2}= \left[\begin{array}{ccc}4&0\\0&4\end{array}\right]

by the same way find AC

 AC= \left[\begin{array}{ccc}2&1\\0&-2\end{array}\right]\times \left[\begin{array}{ccc}-3&-2\\-1&4\end{array}\right]

 AC= \left[\begin{array}{ccc}-6-1&-4+4\\0+2&0-8\end{array}\right]

 AC= \left[\begin{array}{ccc}-7&0\\2&-8\end{array}\right]

Now to solve

A² + AC – 5B=

=\left[\begin{array}{ccc}4&0\\0&4\end{array}\right]+\left[\begin{array}{ccc}-7&0\\2&-8\end{array}\right]-5\left[\begin{array}{ccc}4&1\\-3&-2\end{array}\right]

=\left[\begin{array}{ccc}4-7-20&0+0-5\\0+2+15&4-8+10\end{array}\right]

=\left[\begin{array}{ccc}-23&-5\\17&6\end{array}\right]

Hope it helps you
Similar questions