Math, asked by eshant2192, 1 year ago

Given |a1|=2 and |b2|=3 and |a1+a2|=3, find the values of (a1+2a2)(3a1-4a2)

Answers

Answered by naveed74
11
|a1|=2
|b2|=3
|a1+a2|=3
|a1+2a2|=
(2×3)=6
(3×2-4×3)=
(6-12)=-6
Answered by amirgraveiens
60

Hence value of (a1+2a2)(3a1-4a2) is -64.

Step-by-step explanation:

Given:

|a_1|=2, |b_2|=3, |a_1+a_2|=3

|a_1+a_2|=3

\sqrt{a_12+a_22+2a_1a_2cos\theta} =3

a_12+a_22+2a_1a_2cos \theta= 3^2

a_12+a_22+2a_1a_2cos \thea=9

⇒ 4+9+12cosθ=9

⇒ 12cosθ=−4

cos\theta=\frac{-1}{3}

Now,

[a_1+2a_2]\times[3a_1-4a_2]

3a_1^2-8a_2^2+2a_1a_2cos \theta

3(2)^2-8(3)^2+2(2)(3)(\frac{-1}{3})

⇒ 12-72-4

⇒ -64

Hence value of (a1+2a2)(3a1-4a2) is -64.

Similar questions