Math, asked by athul390, 9 months ago

given a12 =37 d=3 find a and s12​

Answers

Answered by kashish0206
4

Step-by-step explanation:

a + 11d = 37

a + 11(3) = 37

a = 37 - 33

a = 4

Sn = n/2 (2a + (n-1)d)

S12 = 12/2 [2(4) + (12-1)3]

= 6 (8 + 33)

= 6 (41)

= 246

Answered by Anonymous
1

\large\sf\underline\red{GIVEN:-}

\large\tt\purple{a12=37}

\large\tt\purple{d=3}

\small\tt\green{The\:12th\:term\:of\:the\:AP\:is\:37}

\therefore\large\tt\orange{a12=50}

\longrightarrow\small\tt\red{a+(n-1)d=37}

\longrightarrow\small\tt\red{a+(12-1)d=37}

\longrightarrow\small\tt\red{a+11(3)=37}

\longrightarrow\small\tt\red{a=37-33=4}

\small\sf\green{The\:sum\:of\:n\:terms\:of\:an\:AP\:is\:given\:by}

\longrightarrow\large\sf\pink{Sn=\frac{n}{2}(a+l)}

\longrightarrow\large\sf\pink{S12=\frac{12}{2}(4+37)}

\longrightarrow\large\sf\pink{S12=6(41)}

\longrightarrow\large\sf\pink{S12=246}

Similar questions