given ∆abc~∆pqr,if ab/pq=1/3,then find ar∆abc/ar∆pqr
Answers
Answered by
16
GIVEN:
ΔABC ~ Δ PQR & AB/PQ = 1/3
ar(ΔABC)/ar( Δ PQR )= AB²/ PQ²
[The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.]
ar(ΔABC)/ar( Δ PQR ) = 1²/3²
[Given =AB/PQ = ⅓]
ar(ΔABC)/ar( Δ PQR ) = 1/9
Hence, the Area of ΔABC/Area of ΔPQR = 1/9
HOPE THIS WILL HELP YOU….
ΔABC ~ Δ PQR & AB/PQ = 1/3
ar(ΔABC)/ar( Δ PQR )= AB²/ PQ²
[The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.]
ar(ΔABC)/ar( Δ PQR ) = 1²/3²
[Given =AB/PQ = ⅓]
ar(ΔABC)/ar( Δ PQR ) = 1/9
Hence, the Area of ΔABC/Area of ΔPQR = 1/9
HOPE THIS WILL HELP YOU….
Answered by
0
Answer:
1/9 is the answer as we square the sides
Step-by-step explanation:
Similar questions