CBSE BOARD X, asked by AnveshBorkar, 9 months ago

Given : □ ABCD is a Rhombus, Prove : 4AB^2 = AC^2 + BD^2
.
.
I will mark brainliest if answered correctly within 6 mins.....

Answers

Answered by Anonymous
23

 </p><p>Rhombus  \: properties :</p><p></p><p>1) The \:  sides  \: of  \: a  \: rhombus  \: are  \: all  \: congruent  \: (the  \: same  \: length.)  </p><p>A</p><p>B</p><p>=</p><p>B</p><p>C</p><p>=</p><p>C</p><p>D</p><p>=</p><p>D</p><p>A</p><p>=</p><p>a</p><p> </p><p></p><p>2) Opposite  \: angles  \: of \:  a  \: rhombus \:  are \:  congruent  \: (the  \: same  \: size  \: and  \: measure.)</p><p>∠</p><p>B</p><p>A</p><p>D</p><p>=</p><p>∠</p><p>B</p><p>C</p><p>D</p><p>=</p><p>y</p><p>,</p><p>and</p><p>∠</p><p>A</p><p>B</p><p>C</p><p>=</p><p>∠</p><p>A</p><p>D</p><p>C</p><p>=</p><p>x</p><p></p><p>3) The \:  intersection  \: of  \: the diagonals \:  of \:  a  \: rhombus form  \: 90  \: degree \:  (right)  \: angles. \:  This  \: means \:  that \:  they \:  are  \: perpendicular.</p><p>∠</p><p>A</p><p>O</p><p>B</p><p>=</p><p>∠</p><p>B</p><p>O</p><p>C</p><p>=</p><p>∠</p><p>C</p><p>O</p><p>D</p><p>=</p><p>∠</p><p>D</p><p>O</p><p>A</p><p>=</p><p>90</p><p>∘</p><p> </p><p></p><p>4) The  \: diagonals  \: of  \: a \:  rhombus  \: bisect  \: each \:  other. This  \: means  \: that  \: they  \: cut  \: each other  \: in  \: half.</p><p>B</p><p>O</p><p>=</p><p>O</p><p>D</p><p>=</p><p>1</p><p>2</p><p>B</p><p>D</p><p>=</p><p>m</p><p>,</p><p>and</p><p>A</p><p>O</p><p>=</p><p>O</p><p>C</p><p>=</p><p>1</p><p>2</p><p>A</p><p>C</p><p>=</p><p>n</p><p></p><p>5) Adjacent \:  sides  \: of  \: a rhombus  \: are  \: supplementary.  \: This  \: means that  \: their  \: measures  \: add up \:  to  \: 180 \:  degrees.</p><p>x</p><p>+</p><p>y</p><p>=</p><p>180</p><p>∘</p><p> </p><p></p><p>Now  \: back to  \: our \:  question.</p><p></p><p>In  </p><p>Δ</p><p>B</p><p>O</p><p>C</p><p>,</p><p>B</p><p>C</p><p>2</p><p>=</p><p>B</p><p>O</p><p>2</p><p>+</p><p>O</p><p>C</p><p>2</p><p> </p><p>Since  </p><p>B</p><p>O</p><p>=</p><p>1</p><p>2</p><p>B</p><p>D</p><p>,</p><p>and</p><p>O</p><p>C</p><p>=</p><p>1</p><p>2</p><p>A</p><p>C</p><p> </p><p></p><p>⇒</p><p>B</p><p>C</p><p>2</p><p>=</p><p>(</p><p>1</p><p>2</p><p>B</p><p>D</p><p>)</p><p>2</p><p>+</p><p>(</p><p>1</p><p>2</p><p>A</p><p>C</p><p>)</p><p>2</p><p> </p><p></p><p>⇒</p><p>B</p><p>C</p><p>2</p><p>=</p><p>1</p><p>4</p><p>(</p><p>B</p><p>D</p><p>)</p><p>2</p><p>+</p><p>1</p><p>4</p><p>(</p><p>A</p><p>C</p><p>)</p><p>2</p><p> </p><p></p><p>⇒</p><p>B</p><p>C</p><p>2</p><p>=</p><p>1</p><p>4</p><p>(</p><p>B</p><p>D</p><p>2</p><p>+</p><p>A</p><p>C</p><p>2</p><p>)</p><p> </p><p></p><p>⇒</p><p>4</p><p>B</p><p>C</p><p>2</p><p>=</p><p>A</p><p>C</p><p>2</p><p>+</p><p>B</p><p>D</p><p>2</p><p>

hope it helped you friend if it helps you mark it as brainliest

Answered by Anonymous
2

Answer:

In rhombus ABCD, prove that 4AB2 = AC2 + BD2. Proof: The diagonals of a rhombus bisect each other at right angles.

Similar questions