Math, asked by FeelingFcker, 9 months ago

Given ΔACB right angled at C in which AB = 29 units, BC = 21 units and ∠ABC = θ. Determine the value of
co {s}^{2} θ−si {n}^{2} θ 


Answers

Answered by Anonymous
12

 \underline  {\purple {\mathrm{answer}}}

 AB^2 = AC^2 + CB^2

 =  >  AC= \sqrt {AB^2 + CB^2} =  \sqrt{ {29}^{2} -  {21}^{2}  }

 \sqrt{(29 + 21)(29 - 21)}  =  \sqrt{400}  = 20units

therefore \:  \sin \theta =  \frac{AC}{AB}  =  \frac{20}{29} and \:  \cos \theta =  \frac{BC}{AB}

(ii) We \:  have,</p><p></p><p>

 { \cos }^{2}  \theta -  { \sin}^{2} \theta = ( \frac{21}{29}  {)}^{2}  - ( \frac{20}{29}  {)}^{2}  =    \frac{ {21}^{2} -  {20}^{2}  }{ {29}^{2} }  =  \frac{(21 + 20)(21 - 20)}{841}  =  \frac{41}{841}

fig. in ATTACHMENT ✌️

Attachments:
Similar questions