Given an=4, d 12, Sn=- 14 find a and n
Answers
Answered by
3
a_{n}=a+(n-1)d=4
or, a+(n-1)2=4
or, a+2n-2=4
or, a+2n=4+2
or, a+2n=6
or, a=6-2n
=n/2[2a+(n-1)d]=-14
or, n/2[2a+(n-1)2]=-14
or, an+n(n-1)=-14
or, (6-2n)n+n²-n=-14
or, 6n-2n²+n²-n=-14
or, -n²+5n=-14
or, n²-5n=14
or, n²-5n-14=0
or, n²-7n+2n-14=0
or, n(n-7)+2(n-7)=0
or, (n-7)(n+2)=0
either, n-7=0
or, n=7
or, n+2=0
or, n=-2
∵, n can not be negative ;
∴, n=7
∴, a=6-(2×7)
=6-14
=-8
∴, n=7 and a=-8 Ans.
Answered by
0
Answer:
An=a+(n-1)d=4
a+(n-1)2=4 (substitute d=2)
a+2n-2=4
a+2n=6
a=6-2n
Sn=n/2(2a+(n-1)d)
-14=n/2(2(6-2n)+(n-1)2) (substitute a=6-2n,d=2)
-14=n/2(12-4n+2n-2)
-14=n/2(10-2n)
-14=n(5-n)
5n-n^2=-14
n^2-5n-14=0
n^2-7n+2n-14=0
6-2n(n-7)+2(n-7)=0
(n-7)(n+2)=0
n=7,-2
n can't be negative
therefore n=7
a=6-2n (substitute n=7)
a=6-2(7)=6-14=-8
Similar questions