Math, asked by yafin2828, 4 months ago

Given an example for path, cycle, acycle, circute and simple path​

Answers

Answered by Anonymous
0

Answer:

oooooooooookkkkkkkkkkkkkkkkkkkkkkkk

Answered by sumanjasmeet25
1

Answer:

Walk –

A walk is a sequence of vertices and edges of a graph i.e. if we traverse a graph then we get a walk.

Vertex can be repeated

Edges can be repeated

Here 1->2->3->4->2->1->3 is a walk

Walk can be open or closed.

Walk can repeat anything (edges or vertices).

Open walk-A walk is said to be an open walk if the starting and ending vertices are different i.e. the origin vertex and terminal vertex are different.

Closed walk-A walk is said to be a closed walk if the starting and ending vertices are identical i.e. if a walk starts and ends at the same vertex, then it is said to be a closed walk.

In the above diagram:

1->2->3->4->5->3-> is an open walk.

1->2->3->4->5->3->1-> is a closed walk.

2. Trail –

Trail is an open walk in which no edge is repeated.

Vertex can be repeated

Here 1->3->8->6->3->2 is trail

Also 1->3->8->6->3->2->1 will be a closed trail

3. Circuit –

Traversing a graph such that not an edge is repeated but vertex can be repeated and it is closed also i.e. it is a closed trail.

Vertex can be repeated

Edge not repeated

Here 1->2->4->3->6->8->3->1 is a circuit

Circuit is a closed trail.

These can have repeated vertices only.

4. Path –

It is a trail in which neither vertices nor edges are repeated i.e. if we traverse a graph such that we do not repeat a vertex and nor we repeat an edge. As path is also a trail, thus it is also an open walk.

Vertex not repeated

Edge not repeated

Here 6->8->3->1->2->4 is a Path

5. Cycle –

Traversing a graph such that we do not repeat a vertex nor we repeat a edge but the starting and ending vertex must be same i.e. we can repeat starting and ending vertex only then we get a cycle.

Vertex not repeated

Edge not repeated

Here 1->2->4->3->1 is a cycle.

Similar questions