Math, asked by rajsingh24, 11 months ago

GIVEN:-
•CONE'S RADIUS= 9cm.
•VERTICAL HEIGHT =16cm.
FIND:-
•VOLUME OF CONE.
•CSA OF CONE.

______________________
•NEED PROPER ANSWER.
______________________​

Attachments:

Answers

Answered by Sharad001
120

Question :-

Given above ↑

Answer :-

(1) \: \mapsto \blue{  \boxed{\sf \pink{TSA  = 9 \pi \sqrt{337}}  + 81 \pi}} \\  \\ \bf or \:  \\   \mapsto \boxed{  \orange{\sf \: v = 9 \pi( \sqrt{337}}  + 9)} \\  \\ (2) \mapsto \red{ \boxed{ \sf \green{ CSA  = \: 9 \pi \sqrt{337}} }} \\ \\ (3) Volume = 432 \pi \:

To Find :-

(1) Total surface area

(2) Curved surface area (CSA) of cone .

(3) Volume

Solution :-

Given that :

  • radius of its base (r) = 9 cm

  • vertical height (h) = 16 cm

Firstly we will have to find slant height (l )of this cone

 \because \sf \red{ slant \: height \: (l)} =  \green{ \sqrt{ {r}^{2}   +  {h}^{2} } } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \sqrt{ {(9)}^{2} +  {(16)}^{2}  }  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \blue{ \sqrt{81 + 256} } \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: l =  \sqrt{337}

Now ,we know that

(2) Curved surface area of cone = πrl

 \mapsto \red{ \boxed{ \sf \green{ CSA  = \: 9 \pi \sqrt{337}} }} \\

(1) now ,

 \mapsto \sf total \:surface \: area  \: (TSA) = CSA +  \pi {r}^{2}  \\  \\  \sf \mapsto \: TSA =  9 \pi \sqrt{337}  +  \pi \:  {(9)}^{2}  \\  \\  \mapsto \blue{  \boxed{\sf \pink{TSA= 9 \pi \sqrt{337}}  + 81 \pi}} \\  \\ \bf or \:  \\  \\  \mapsto \boxed{  \orange{\sf \: TSA = 9 \pi( \sqrt{337}}  + 9)}

(3) Volume of cone

→ Now ,volume of cone

→ 1/3 πr² h

→ 1/3 π (9)² × 16

→ (81×16 × π)/3

→ 432 π

Answered by Nereida
12

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

{\huge\tt\bf{Given}}\begin{cases}\sf{Radii\:of\:cone = 9\:cm}\\\sf{Vertical\:height\:of\:cone=16\:cm} \end{cases}

{\huge\tt\bf{To\:Find}}\begin{cases}\sf{Volume\:of\:cone=?}\\\sf{CSA\:of\:cone=?} \end{cases}

\huge\tt\bf {Solution:-}

Volume of cone :-

\huge {\boxed {\tt\dfrac {1}{3}\pi {r}^{2} h}}

Putting in the given values,

\leadsto\tt{\dfrac {1 }{3}\times \dfrac {22}{7}\times  {(9)}^{2}\times 16}

\huge\leadsto \tt {\underline{1,357.7142\: {cm}^{3}}}

CSA of cone:-

\huge {\boxed {\tt \pi r l}}

Let's find l,

\huge {\boxed {\tt l =\sqrt {{h}^{2}+{r}^{2}}}}

\leadsto\tt {l= \sqrt{{(16)}^{2}+{(9)}^{2}}}

\leadsto\tt{l=\sqrt {337}}

\leadsto \tt {l=18.35\:cm}

Now finding CSA,

\leadsto \tt {\dfrac {22}{7}\times 9\times 18.35}

\huge\leadsto \tt {\underline{519.042\:{cm}^{2}}}

\rule {200}2

Similar questions