given coseca + cota =p. prove that sina= 2p÷p^2+1
Answers
Answered by
3
Given → cosecA+ cotA = p
R.T.P. → sinA = 2p/(p²+1)
Proof → we know that, cot²A+1 = cosec²A
Cosec²A - cot²A = 1
( cosecA- cotA) ( cosecA + cotA ) = 1
( CosecA-cotA) p = 1
( CosecA-cotA) =1/p -------> 1)
CosecA + cotA = p. (given) -----2)
Adding 1) and 2)
2 CosecA = 1/p +p = (p²+1)/p
CosecA = (p²+1)/2p
Using , sinA = 1/ CosecA
We get , sinA = 2p/(p²+1)
Similar questions