Given cot teeta =7/8,then evaluate (1+sin q) /cos q
Answers
Step-by-step explanation:
Solution(i):
(1+cosθ)(1−cosθ)
(1+sinθ)(1−sinθ)
We have, a
2
−b
2
=(a+b)(a−b)
Similarly,
(1−sin
2
θ)=(1+sinθ)(1−sinθ)
(1−cos
2
θ)=(1+cosθ)(1−cosθ)
Therefore,
(1+cosθ)(1−cosθ)
(1+sinθ)(1−sinθ)
=
(1−cos
2
θ)
(1−sin
2
θ)
=
(1−(
113
7
)
2
)
(1−(
113
8
)
2
)
=
(113−49)
(113−64)
=
64
49
Solution(ii):
Given,
cotθ=
8
7
cot
2
θ=(
8
7
)
2
=
64
49
Answer:
The Question is typed only Half, the complete question is
Q. Given cot theta = 7/8, then evaluate
(i) (1 + sin q) (1 - sin q)/(1 + cos q) (1 - cos q)
Sol:- Given: cot θ = Adjacent/Oppsoite = AB/BC = 7/8
Let: q = θ
∴ (1 + sin θ) (1 - sin θ)/(1 + cos θ) (1 - cos θ) --- Eq (1)
∴ By Pythagoras theorem,
= (BC)² = (AB)² + (AC)²
= (BC)² = (7)² + (8)²
= 49 + 64
⇒ (BC)² = 113 ⇒ BC = √113
∴ sin θ = Opposite/Hypotenuse = AC/BC = 8/√113
cosθ = Adjacent/Hypotenuse = AB/BC = 7/√113
⇒ Putting the values of sinθ and cosθ in Eq (1),
= [∵ (a + b) (a - b) = a² - b²]
Here, a = 1 and b = (Numerator)
a = 1 and b = (Denominator)
=
= ⇒
∴ Required answer is 49/64