Math, asked by mintu151416, 4 months ago

given cot teta=7/8 then evaluate( 1+sin teta/cos teta) ​

Answers

Answered by jahnavijanu1018
1

Answer:

2.6614

Step-by-step explanation:

We know that Cot \theta = \frac{Base}{Perpendicular}Cotθ=

Perpendicular

Base

We are given that cot \theta= \frac{7}{8}cotθ=

8

7

On comparing

Base = 7

Perpendicular = 8

To find hypotenuse we will use Pythagoras theorem

Hypotenuse^2 = Perpendicular^2+Base^2Hypotenuse

2

=Perpendicular

2

+Base

2

Hypotenuse^2 = 8^2+7^2Hypotenuse

2

=8

2

+7

2

Hypotenuse^2 = 64+49Hypotenuse

2

=64+49

Hypotenuse^2 = 113Hypotenuse

2

=113

Hypotenuse = \sqrt{113}Hypotenuse=

113

Sin\theta = \frac{Perpendicular}{Hypotenuse}Sinθ=

Hypotenuse

Perpendicular

Sin\theta = \frac{8}{\sqrt{113}}Sinθ=

113

8

Cos\theta = \frac{Base}{Hypotenuse}Cosθ=

Hypotenuse

Base

Cos\theta = \frac{7}{\sqrt{113}}Cosθ=

113

7

Now we are supposed to find \frac{1+sin\theta}{cos \theta}

cosθ

1+sinθ

Substitute the values

=\frac{1+\frac{8}{\sqrt{113}}}{\frac{7}{\sqrt{113}}}=

113

7

1+

113

8

=2.6614=2.6614

Hence \frac{1+sin\theta}{cos \theta}=2.6614

cosθ

1+sinθ

=2.6614

Step-by-step explanation:

I hope this will help you

Similar questions