Given cot theta =7/8 evaluate
(1+sin theta)(1-sin theta)/(1+cos theta)(1-cos theta)
Answers
Answered by
24
hi friend,
First we will calculate the value of sinθ and cosθ
Now,tanθ=1/cosθ
tanθ=1/7/8
opp/adj=8/7
BC/AB=8/7
LET BC=8X AND AB=7X
WE find AC using pythagoras therom
hyp²=(height)²+(base)²
AC²=(7x)²+(8x)²
AC²=√113x²
AC=√113x
Now,we need to find sin and cos
here,sin=opp/hyp
=BC/AC=8x/√113x
=8/√113
cos=adj/hyp
AB/AC=7x/√113x
=7/√113
HERE WE HAVE TO EVALUATE
(1+SIN)(1-SIN)/(1+COS)(1-COS)
USING (a+b)(a-b)=a²-b²
=(1²-sin²)/(1²-cos²)
=(1-sin²)/(1-cos²)
PUTTING sin =8/√113 and cos = 7/√113
=[1-(8/√113)²]/[1-(7/√113)²
=(1-8²/√113)/(1-7²/√113)
=(1-64/113)/(1-49/113)
=(113-64/113)/(113-49/113)
=113-64/113-49
=49/64
HENCE,(1+sin)(1-sin)/(1+cos)(1-cos)=49/64
HENCE PROVED✌
Answered by
9
hi friend,
First we will calculate the value of sinθ and cosθ
Now,tanθ=1/cosθ
tanθ=1/7/8
opp/adj=8/7
BC/AB=8/7
LET BC=8X AND AB=7X
WE find AC using pythagoras therom
hyp²=(height)²+(base)²
AC²=(7x)²+(8x)²
AC²=√113x²
AC=√113x
Now,we need to find sin and cos
here,sin=opp/hyp
=BC/AC=8x/√113x
=8/√113
cos=adj/hyp
AB/AC=7x/√113x
=7/√113
HERE WE HAVE TO EVALUATE
(1+SIN)(1-SIN)/(1+COS)(1-COS)
USING (a+b)(a-b)=a²-b²
=(1²-sin²)/(1²-cos²)
=(1-sin²)/(1-cos²)
PUTTING sin =8/√113 and cos = 7/√113
=[1-(8/√113)²]/[1-(7/√113)²
=(1-8²/√113)/(1-7²/√113)
=(1-64/113)/(1-49/113)
=(113-64/113)/(113-49/113)
=113-64/113-49
=49/64
HENCE,(1+sin)(1-sin)/(1+cos)(1-cos)=49/64
HENCE PROVED✌
Similar questions