Given cot theta =7/8,
then evaluate
1). ( 1+sin theta)(1-sin theta) / (1+cos theta)(1-cos theta)
2). 1+sin theta / cos theta
Answers
Answered by
6
★Given:-
- Cotθ = 7/8
★To find:-
- (1+sinθ)(1-sinθ) / (1+cosθ)(1-cosθ)
- 1+sinθ / cosθ
Formula's we need to know:
✦[a²-b²=(a+b)(a-b)]
✦1-sin²θ = cos²θ
✦1-cos²θ = sin²θ
✦cotθ = cosθ /sinθ
✦sec²θ = 1+tan²θ
✦tanθ = 1/cotθ
★Solution:-
1.(1+sinθ)(1-sinθ) / (1+cosθ)(1-cosθ)
⇒1²-sin²θ/1²-cos²θ
⇒1-sin²θ/1-cos²θ
⇒ cos²θ/sin²θ
⇒cot²θ
Given that cotθ = 7/8
Therefore,
⇒cot²θ = (7/8)²
= 49/64
-------------------------
2.(1+sinθ)/cosθ
⇒1/cosθ + sinθ/cosθ
⇒secθ + tanθ....(1)
Using the formula,
✦sec²θ = 1+tan²θ
⇒secθ = √ 1+(64/49)
=√113 /7
We now have,
- secθ = √113 /7
- tanθ = 1/cotθ = 8/7
Putting these values in (1),
⇒√113 /7 + 8/7
⇒ √113 +8 /7
_______________
Similar questions
English,
2 months ago
Social Sciences,
2 months ago
English,
2 months ago
Math,
5 months ago
Hindi,
5 months ago
Geography,
11 months ago
Accountancy,
11 months ago
English,
11 months ago