Math, asked by magbuljan1988, 8 hours ago

given cot theta=7/8then find 1+sin theta/cos theta

Answers

Answered by manaalmaple255
0

Step-by-step explanation:

cotθ=

8

7

BC

AB

=

8

7

∴AB=7,BC=8

In ⊥ΔABC,∠B=90

0

∴AC

2

=AB

2

+BC

2

=(7)

2

+(8)

2

=49+64

AC

2

=113

∴AC=

113

sinθ=

AC

BC

=

113

8

cosθ=

AC

AB

=

113

7

(i)

(1+cosθ)(1−cosθ)

(1+sinθ)(1−sinθ)

=

(1+

113

7

)(1−

113

7

)

(1+

113

8

)(1−

113

8

)

=

(1)

2

−(

113

7

)

2

(1)

2

−(

113

8

)

2

=

1−

113

49

1−

113

64

=

64

49

(ii) cotθ=

8

7

∴cot

2

θ=(

8

7

)

2

=

64

49

solution

Answered by avisaini1313
0

Step-by-step explanation:

ATQ

 \cot(x)  =  \frac{7}{8}  \\ \: to \: find \: 1 +  \tan(x)  \\ we \: know \:  \ \cot(x)  =  \frac{1}{ \tan(x) }  =  >  \tan(x =  \frac{8}{7} )  \\ now \:  \: 1 +  \frac{8}{7}  =  \frac{15}{7}

mark me as brainliest

Similar questions