Math, asked by AishwaryaTP, 9 months ago

given cot theta is equal to 20 divided by 21 determine cos theta and Cosec
theta​

Answers

Answered by Cosmique
32

Answer :

  • cosec θ = 29 / 21
  • cos θ = 20 / 29

Given :

  • cot θ = 20 / 21

To find :

  • cos θ = ?
  • cosec θ = ?

Solution :

Using trigonometric identity

→ 1 + cot²θ = cosec²θ

→ cosec²θ = 1 + ( 20/ 21 )²

→ cosec²θ = 1 + ( 400 / 441 )

→ cosec²θ = ( 441 + 400 ) / 441

→ cosec²θ = 841 / 441

→ cosec θ = √( 841 / 441 )

cosec θ = 29 / 21

Hence,

  • cosec θ is equal to 29 / 21

Now since, cosec θ = 1 / sin θ

therefore,

→ sin θ = 21 / 29

squaring both sides

→ sin²θ = 441 / 841

using trigonometric identity

1 - cos²θ = 441 / 841

→ cos²θ = 1 - ( 441 / 841 )

→ cos²θ = ( 841 - 441 ) / 841

→ cos²θ = 400 / 841

→ cos θ = √ ( 400 / 841 )

cos θ = 20 / 29

Hence,

  • cos θ is equal to 20 / 29

Answered by Anonymous
2

\star\:\:\:\bf\large\underline\blue{Given:—}

Cot∅=\frac{20}{21}

\star\:\:\:\bf\large\underline\blue{To\:find:—}

  • Cos∅ = ?
  • Cosec∅ = ?

\star\:\:\:\bf\large\underline\blue{Solution:—}

cosec∅ =  \sqrt{1 + ( \frac{20}{21} )^{2} }   \\ =   \sqrt{1 +  \frac{400}{441 } }  \\  =  \sqrt{ \frac{841}{441} }  \\  =  \frac{29}{21}  \\ \\

As , Sin∅ =1/cosec∅

Therefore, Sin∅ = 21/29

Now,

cos∅ =  \sqrt{1  - ( \frac{21}{29})^{2}  }  \\  =   \sqrt{1 -  \frac{441}{841} }   \\  =  \sqrt{ \frac{400}{841} }  \\  =  \frac{20}{29}

Therefore, cos = 20/29

and cosec = 29/21

__________________________

Similar questions