Math, asked by arishithasree, 18 days ago

Given cot tita =7/8 then evaluate (I) (1+sin tita) (1 -sin tita)/ (1 + cos tita)(1-cos tita)​

Answers

Answered by NITESH761
1

Answer:

\rm \dfrac{49}{64}

Step-by-step explanation:

\sf  \large\red{Given:-}

\rm \cot θ = \dfrac{7}{8}

\sf \large \red{To \: find:-}

\rm \dfrac{(1+ \sin θ)(1- \sin θ)}{(1+ \cos θ)(1-\cos θ)}

\sf \large \red{Solution:-}

\rm \cot θ = \dfrac{7}{8}

We know that,

\boxed{\rm \cot ^2 θ = \cosec ^2 θ -1 }

\cot ^2 θ = \dfrac{49}{64}

\cot ^2 θ +1 = \dfrac{49}{64}+1

\cosec ^2 θ = \dfrac{49+64}{64}

\cosec ^2 θ = \dfrac{113}{64}

\cosec  θ = \sqrt{\dfrac{113}{64}}

\cosec  θ = \dfrac{\sqrt{113}}{8}

\sin  θ = \dfrac{8}{\sqrt{113}}

\sin  ^2 θ = \bigg( \dfrac{8}{\sqrt{113}} \bigg) ^2

\sin  ^2 θ = \dfrac{64}{113}

1- \sin  ^2 θ = 1- \dfrac{64}{113}

\cos ^2 θ =  \dfrac{113-64}{113}

\cos ^2 θ =  \dfrac{49}{113}

\cos  θ =  \dfrac{7}{\sqrt{113}}

\rm \dfrac{(1+ \sin θ)(1- \sin θ)}{(1+ \cos θ)(1-\cos θ)}

\rm \dfrac{ \bigg(1+ \dfrac{8}{\sqrt{113}} \bigg) \bigg(1- \dfrac{8}{\sqrt{113}} \bigg)}{ \bigg(1+ \dfrac{7}{\sqrt{113}} \bigg) \bigg(1-\dfrac{7}{\sqrt{113}} \bigg)}

\rm \dfrac{ \bigg( \dfrac{\sqrt{113}+8}{\sqrt{113}} \bigg) \bigg( \dfrac{\sqrt{113}-8}{\sqrt{113}} \bigg)}{ \bigg( \dfrac{\sqrt{113}+7}{\sqrt{113}} \bigg) \bigg(\dfrac{\sqrt{113}-7}{\sqrt{113}} \bigg)}

\rm \dfrac{ \dfrac{113-64}{113}}{\dfrac{113-49}{113}}

\rm \dfrac{49}{64}

Similar questions