Given cot0=7/8 then evaluate 1+sin0/cos0
Answers
Answered by
2
Answer:
(√113 + 8)/7
Step-by-step explanation:
= > cot0 = 7/8
= > base/height = 7/8
So let the base be 7a and height be 8a.
Using Pythagoras theorem,
= > hypotenuse² = (7a)² + (8a)²
= > hypotenuse² = 49a²+64a² = 113a²
= > hypotenuse = √113a² = a√113
Therefore,
= > 1 + sin0 = 1 + (height/hypo.)
= > 1 + 8a/a√113
= > (√113 + 8)/√113
= > cos0 = base/hypo. = 7a/a√113 = 7/√113
Thus,
= > (1 + sin0)/cos0
= > (√113 + 8)/7
Answered by
16
Answer:-
cot 0=adjacent side/opposite side=7/8
According to Pythagoras theorem,
AC²=AB²+BC²=√49+64=√113
sin 0=opposite side/hypotenuse side=8/√113
cos 0=adjecent side / hypotenuse side=7/√113
thus,
1+sin 0/cos0=1+8/√113/7/√113=√113+8/7
Similar questions