Math, asked by Anonymous, 4 months ago

given cotA =root 1/3 find all other trigonometric ratios​


Don't answer if you can't...​

Answers

Answered by Anonymous
12

Given:-

  • CotA = \sf{\dfrac{1}{\sqrt{3}}}

To find:-

All other trigonometric ratios.

Solution:-

We know,

CotA = \sf{\dfrac{Base}{Perpendicular}}

Therefore,

\sf{\dfrac{1}{\sqrt{3}} = \dfrac{Base}{Perpendicular}}

Now,

We have,

Base = 1 units

Perpendicular = √3 units.

Now using pythagoras theorem we can find out hypotenuse.

According to Pythagoras Theorem

\sf{(Hypotenuse)^2 = (Base)^2 + (Perpendicular)^2}

= \sf{Hypotenuse = \sqrt{(1)^2 + (\sqrt{3})^2}}

= \sf{Hypotenuse = \sqrt{1+3}}

= \sf{Hypotenuse = \sqrt{4}}

= \sf{Hypotenuse = 2\:units}

Now,

Let us find all the other trigonometric ratios.

For SinA

\sf{SinA = \dfrac{Perpendicular}{Hypotenuse}}

= \sf{SinA = \dfrac{\sqrt{3}}{2}}

For CosA

\sf{CosA = \dfrac{Base}{Hypotenuse}}

= \sf{CosA = \dfrac{1}{2}}

For TanA

\sf{TanA = \dfrac{Perpendicular}{Base}}

= \sf{TanA = \dfrac{\sqrt{3}}{1} = \sqrt{3}}

For CosecA

\sf{CosecA = \dfrac{Hypotenuse}{Perpendicular}}

= \sf{CosecA = \dfrac{2}{\sqrt{3}}}

For SecA

\sf{SecA = \dfrac{Hypotenuse}{Base}}

= \sf{SecA = \dfrac{2}{1} = 2}

For CotA

\sf{CotA = \dfrac{Base}{Perpendicular}}

= \sf{CotA = \dfrac{1}{\sqrt{3}}}

Therefore all the trigonometric ratios are as follows:-

\sf{SinA = \dfrac{\sqrt{3}}{2}}

\sf{CosA = \dfrac{1}{2}}

\sf{TanA = \sqrt{3}}

\sf{CosecA = \dfrac{2}{\sqrt{3}}}

\sf{SecA = 2}

\sf{CotA = \dfrac{1}{\sqrt{3}}}

______________________________________

Points To Remember!!!

  • \sf{Sin\theta = \dfrac{Perpendicular}{Hypotenuse}}

  • \sf{Cos\theta = \dfrac{Base}{Perpendicular}}

  • \sf{Tan\theta = \dfrac{Perpendicular}{Base}}

  • \sf{Cosec\theta = \dfrac{Hypotenuse}{Perpendicular}}

  • \sf{Sec\theta = \dfrac{Hypotenuse}{Base}}

  • \sf{Cot\theta = \dfrac{Base}{Perpendicular}}

______________________________________

Answered by Anonymous
2

Given :

\bf cotA = \sqrt{ \dfrac{1}{3}} </p><p></p><p>  [tex]\bf \implies cotA = \dfrac{1}{\sqrt{3}}

To Find :

All other trigonometric ratios.

sinA

cosA

tanA

cosecA

secA

Solution :

To do this sum more easily let's make a diagram of right angled triangle ABC.

Now, From point A,

AC = Hypotenuse

BC = Perpendicular

AB = Base

\bf We \: are \: given, \: cotA = \dfrac{1}{\sqrt{3}}

\bf We \: know \: that \: cot \theta = \dfrac{base}{perpendicular}

\bf \implies  \dfrac{base}{perpendicular} = \dfrac{1}{\sqrt{3}}

\bf \implies  \dfrac{AB}{BC} = \dfrac{1}{\sqrt{3}}

\bf \implies  AB = 1x \: ; \: BC = \sqrt{3}x \: (x \: is \: positive)

Now, by Pythagoras' theorem, we have</p><p></p><p>AC² = AB² + BC²

\bf \implies AC^{2} = (1x)^{2} + (\sqrt{3}x)^{2}

\bf \implies AC^{2} = 1x^{2} + 3x^{2}

\bf \implies AC^{2} = 4x^{2}

\bf \implies AC = \sqrt{4x^{2}}

\bf \implies AC = 2x

Now,

\bf sin \theta = \dfrac{perpendicular}{hypotenuse}

\bf\implies sinA = \dfrac{BC}{AC}

\bf \implies sinA = \dfrac{\sqrt{3}x}{2x}

\bf \implies sinA = \dfrac{\sqrt{3}}{2}

\Large \boxed{\bf sinA = \dfrac{\sqrt{3}}{2}}

\bf cos \theta = \dfrac{base}{hypotenuse}

\bf \implies cosA = \dfrac{AB}{AC}

\bf \implies cosA = \dfrac{1x}{2x}

\bf \implies cosA = \dfrac{1}{2}

\Large \boxed{\bf cosA = \dfrac{1}{2}}

\bf tan \theta = \dfrac{perpendicular}{base}

\bf \implies tanA = \dfrac{BC}{AB}

\bf \implies tanA = \dfrac{\sqrt{3}x}{1x}

\bf \implies tanA = \sqrt{3}

\Large \boxed{\bf tanA = \sqrt{3}}

\bf cosec \theta = \dfrac{hypotenuse}{perpendicular}

\bf \implies cosecA = \dfrac{AC}{BC}

\bf \implies cosecA = \dfrac{2x}{\sqrt{3}x}

\bf \implies cosecA = \dfrac{2}{\sqrt{3}}

\Large \boxed{\bf cosecA = \dfrac{2}{\sqrt{3}}}

\bf sec \theta = \dfrac{hypotenuse}{base}

\bf \implies secA = \dfrac{AC}{AB}

\bf \implies secA = \dfrac{2x}{1x}

\bf \implies secA = 2

\Large \boxed{\bf secA = 2}

Similar questions