Math, asked by velvinith2005, 6 months ago

given f(2)=3 g(3)=2and g(2)=5 then (fog)(3)​

Answers

Answered by MaheswariS
1

\textbf{Given:}

\mathsf{f(2)=3,\;g(3)=2\;\;and\;\;g(2)=5}

\textbf{To find:}

\mathsf{(f\,o\,g)(3)}

\textbf{Solution:}

\textbf{Concept used:}

\boxed{\begin{minipage}{7cm}$\\\textsf{If f(x) and g(x) are two functions, then}\\\\\mathsf{(f\,o\,g)(x)=f[g(x)]}\\$\end{minipage}}

\mathsf{Consider,}

\mathsf{(f\,o\,g)(3)}

\mathsf{=f[g(3)]}

\mathsf{=f[2]}

\mathsf{=3}

\implies\boxed{\mathsf{(f\,o\,g)(3)=3}}

Answered by jilanishaikh786
0

Answer:

okohhfdhjiyyr tgtes

Step-by-step explanation:

xvfggg he fhfgffhfgxgvdgsdcdhdgfxvcvjhcv

fhfh gh ghg hfhggfggyfyhugghhhh

Similar questions