Given: f(X) = 2x^n+a , if : f(2)=26 and f(4)=138 , than : f(3) = ______
A. 56
B. 82
C. 64
D. 122
.........Full explain Please...
Answers
Answer:
hope it will help you
Step-by-step explanation:
plse mark it as brianlist ans plese
plese mark it as brianlist ans
The value of f(3) is (C) 64.
Given: f(X) = 2x^n + a ,
f(2) = 26 and f(4) = 138
To Find: The value of f(3).
Solution:
To find the solution to this question, we need to first find the values of 'a' and 'n'. We are given,
f(X) = 2x^n+a , and f(2)=26 and f(4)=138 ,
So substituting X = 2 in f(X), we get;
f(2) = 2 × 2^n + a
⇒ 26 = 2^(n+1) + a ......(1)
Again substituting X = 4 in f(X), we get;
f(4) = 2 × 4^n + a
⇒ 138 = 2^(2n + 1) + a .....(2)
Subtracting (2) from (1), we get;
2^(2n + 1) + a - 2^(n+1) - a = 138 - 26
⇒ 2 × [ 2^2n - 2^n ] = 112
⇒ 2^2n - 2^n - 56 = 0
Now, let us take 2^n = t, so rewriting the above equation, we get,
t² - t - 56 = 0
⇒ t² - 8t + 7t - 56 = 0
⇒ t ( t - 8 ) + 7 ( t - 8 ) = 0
⇒ t = -7 , 8
So, t ≠ -7, taking t = 8,
⇒ 2^n = 8
⇒ 2^n = 2^3
⇒ n = 3
So, putting n = 3 in (1), we get;
2^(n+1) + a = 26
⇒ 2^(3+1) + a = 26
⇒ a = 26 -16
⇒ a = 10
Hence, the value of n = 3 and a = 10
So, f(3) = 2 × 3^3 + 10
= 54 + 10
= 64
Hence, the value of f(3) is (C) 64.
#SPJ2