Math, asked by vking1318, 1 year ago

Given f(x)=2x2+3 and g(x) = 5x+2, how do you find 3f(2)−2g(2)f(1)+g(1)?

Answers

Answered by Anonymous
11
\huge{\ulcorner{\red{\bold{Answer}}}}\rfloor

\large{\star} \textsf{Given that :- }

 f(x) = 2x^2 + 3

 g(x) = 5x + 2

\large{\star} \textsf{In order to find :- }

 3f(2) - 2g(2) \times f(1) + g(1)

\large{\star} \textsf{ We will first find :- }

(i)

 3 \times f(2)

 \textbf{ By replacing x = 2}

 = 3 \times [ 2(2)^2 + 3 ]

 = 3 \times [ 2(4) + 3 ]

 = 3 \times [ 8 + 3 ]

 = 3 \times [11]

 = 33

(ii)

 2 \times g(2)

 \textbf{ By replacing x = 2}

 = 2 \times [ 5(2) + 2 ]

 = 2 \times [ 10 + 2 ]

 = 2 \times [ 12]

 = 24

(iii)

 f(1)

 \textbf{ By replacing x = 1}

 = 2(1)^2 + 3

 = 2(1) + 3

 = 2 + 3

 = 5

(iv)

 g(1)

 \textbf{ By replacing x = 1}

 = 5(1) + 2

 = 5 + 2

 = 7

\large{\star} \textsf{ Now replacing values :- }

 3f(2) - 2g(2) \times f(1) + g(1)

 = 33 - (24 \times 5) + 7

 = 33 - 120 + 7

 = 40 - 120

 = -80

\boxed{\large{\star} \textsf{ So Answer = -80 }}
Similar questions