Math, asked by chirag8573, 1 year ago

Given fhat the zeroes of the cubic polynomial x^3 - 6x^3 + 3x+10 are of tge form a,a+b,a+2b for some real number a and b . Find the values of a and b asa well as the zeroes of following polynomial

Answers

Answered by misbahsajjid4
0

Given

a, a+b, a+2b are roots or zeroes of cubic polynomial 

x³-6x²+3x+10=0


From this cubic polynomial,

Sum of the zeroes or roots are given as,

--> a+2b+a+a+b = -a of x²/ a of x³

where a is coefficient of x² and  x³

                          -->3a+3b = -(-6)/1 = 6

                         --> 3(a+b) = 6

                          -->a+b = 2  --------- 1)

--> b = 2-a


Product of roots/zeroes--> (a+2b)(a+b)a = -constant/coefficient of x³

                         -->(a+b+b)(a+b)a = -10/1


Put the value of a+b=2 ,

            (2+b)*(2)a = -10

                      (2+b)*2a = -10

                        (2+2-a)*2*a = -10

                        (4-a)*2*a = -10

                        4*a-a² = -5

                         a²-4*a-5 = 0

                         a²-5*a+a-5 = 0

                         (a-5)(a+1) = 0

                     a-5 = 0      or        a+1 = 0

either                  or                      

a = 5                     a = -1                


 a = 5, -1 ---> 1)  

a+b = 2


or when, a = 5,

5+b=2 

-->b=-3

 a = -1, -1+b=2 ⇒ b= 3


so that If a=5 then the value of b= -3

           or

 so that  If a= -1 then the value of b=3




Similar questions