Math, asked by MewaraPavan, 10 months ago

Given identities Find the value of
 {101}^{3}

Answers

Answered by shardul1925
0

Hope it helps.................

Attachments:
Answered by Brâiñlynêha
15

\huge\mathbb{SOLUTION:-}

identity used :-

\boxed{\sf{(a+b){}^{3}=a{}^{3}+b{}^{3}+3ab(a+b)}}

Now

\bf\underline{\red{\:\:\:\:A.T.Q\:\:\:\:}}

we can write this in the form of

\sf\bullet (100+1){}^{3}

\sf\implies (100+1){}^{3}\\ \\ \sf\implies (100){}^{3}+(1){}^{3}+3\times 100\times 1(100+1)\\ \\ \sf\implies 1000000+1+300\times 101\\ \\ \sf\implies 1000001+30300\\ \\ \sf\implies 1030301

\boxed{\sf{(101){}^{3}=1030301}}

Similar questions