Math, asked by Enigma222, 1 year ago

Given, if y=f(x)=(2x+1)/(3x-m) and if f(y)=x, Find m.

Answers

Answered by boffeemadrid
0

Given

y=f(x)=\dfrac{2x+1}{3x-m}

f(y)=x

To find

Value of m

Solution

f(y)=x\\\Rightarrow \dfrac{2y+1}{3y-m} =x

Taking x to be 0 in the first equation we get

y=\dfrac{2x+1}{3x-m}\\\Rightarrow y=\dfrac{1}{-m}\\\Rightarrow y=-\dfrac{1}{m}

So

x=\dfrac{2\times-\dfrac{1}{m}+1}{3\times -\dfrac{1}{m}-m}

Taking x =0

0=\dfrac{2\times-\dfrac{1}{m}+1}{3\times -\dfrac{1}{m}-m}\\\Rightarrow 0=2\times-\dfrac{1}{m}+1\\\Rightarrow m=\dfrac{1}{2}

So, \mathbf{m=\dfrac{1}{2}}

Similar questions