Math, asked by sk3288943, 8 months ago

Given: In

∆ABC ,∠B=90° . If

sec=0

13

12

, calculate

all other

trigonometrical ratios.0​

Answers

Answered by ItzArchimedes
3

Correct question :-

In ∆ABC , ∠B = 90° & sec∅ = 13/12. Then find all other trigonometric ratios

Solution :-

All trigonometric ratios

sin∅ = Opposite/Hypotenuse

cos∅ = Adjacent/Hypotenuse

tan∅ = Opposite/Adjacent

cosec∅ = Hypotenuse/Opposite

sec∅ = Hypotenuse/Adjacent

cot∅ = Adjacent/Opposite

Firstly finding other side of right ∆

If sec∅ = 13/12 , Hypotenuse of ∆ will be 13 & adjacent side of ∅ will be 12

Now , finding other side of ∅ using Pythagoras theorem

Hypotenuse² = Base² + Height²

13² = 12² + H²

169 - 144 = H²

H = √25

Height = 5

Now , finding all trigonometric ratios.

Sin∅ = 5/13

Cos∅ = 12/13

Tan∅ = 5/12

Cosec = 13/5

Sec∅ = 13/12

Cot∅ = 12/5

Answered by Disha976
6

Given that,

 \qquad \rm { • sec \: θ = \dfrac{13}{12} }

__________

We have to find,

 \qquad \rm { • All \: trigonometric \: ratios }

__________

Solution,

We know that ,

 \qquad \rm { • sec \: θ = \dfrac{Hypotenuse}{Base} }

So,

 \qquad \rm { • Hypotenuse = 13}

 \qquad \rm { • Base = 12}

___________

Applying pythagoras property-

 \rm\red { {H}^{2} = {B}^{2} +{P}^{2} }

 \rm { {P}^{2} = {H}^{2} - {B}^{2} }

 \rm { \implies {P}^{2} = {H}^{2} - {B}^{2} }

 \rm { \implies {P}^{2} = {13}^{2} - {12}^{2} }

 \rm { \implies {P}^{2} = 169 - 144 }

 \rm { \implies {P}^{2} = 25 }

 \rm { \implies P = \sqrt{25}= 5 }

____________

 \qquad \rm { • Hypotenuse = 13}

 \qquad \rm { • Base = 12}

 \qquad \rm { • Perpendicular = 5}

____________

 \qquad \rm { • sin \:θ  = \dfrac{P}{H} = \dfrac{5}{13} }

 \:

 \qquad \rm { • cos \:θ  = \dfrac{B}{H} = \dfrac{12}{13} }

 \:

 \qquad \rm { • tan \:θ  = \dfrac{P}{B} = \dfrac{5}{12} }

 \:

 \qquad \rm { • cosec \:θ  = \dfrac{H}{P} = \dfrac{13}{5} }

 \:

 \qquad \rm { • sec \:θ  = \dfrac{H}{B} = \dfrac{13}{12} }

 \:

 \qquad \rm { • cot \:θ  = \dfrac{B}{P }= \dfrac{12}{5} }

Attachments:
Similar questions