Given: logx/logy= 3/2 and log (xy) = 5 ; find the values of x and y.
Solve: log5(x+1) - 1 = 1 + log5(x-1)
Answers
Answered by
43
logx/logy = 3/2
⇒ log y = (2log x )/3 ........... i
log(xy) = 5
⇒log x + log y = 5 ...... ii
let log x = a
using i we get
a + 2a/3 = 5
⇒ 3a + 2a = 15
⇒ a = 3
so log x = 3 ⇒ x = 10³
so x = 1000 ANSWER
so log y = 2log x/ 3
⇒ log y = 2
y = 10² = 100 ANSWER
log₅(x+1) - 1 = 1 + log₅(x-1)
⇒ log₅(x+1) - log₅(x-1) = 2
⇒ =
cancelling the log from both sides
⇒ x+1 = 25x - 25
⇒24x = 26
⇒ x = ANSWER
⇒ log y = (2log x )/3 ........... i
log(xy) = 5
⇒log x + log y = 5 ...... ii
let log x = a
using i we get
a + 2a/3 = 5
⇒ 3a + 2a = 15
⇒ a = 3
so log x = 3 ⇒ x = 10³
so x = 1000 ANSWER
so log y = 2log x/ 3
⇒ log y = 2
y = 10² = 100 ANSWER
log₅(x+1) - 1 = 1 + log₅(x-1)
⇒ log₅(x+1) - log₅(x-1) = 2
⇒ =
cancelling the log from both sides
⇒ x+1 = 25x - 25
⇒24x = 26
⇒ x = ANSWER
Anonymous:
hope this helps
Answered by
7
Answer:logx/logy = 3/2
⇒ log y = (2log x )/3 ........... i
log(xy) = 5
⇒log x + log y = 5 ...... ii
let log x = a
using i we get
a + 2a/3 = 5
⇒ 3a + 2a = 15
⇒ a = 3
so log x = 3 ⇒ x = 10³
so x = 1000 ANSWER
so log y = 2log x/ 3
⇒ log y = 2
y = 10² = 100 ANSWER
Step-by-step explanation:
Similar questions