Math, asked by madhusree8734, 1 year ago

Given: △MNO, m∠M=45° m∠O=30°, MN=6 Find: NO, MO.

Answers

Answered by HappiestWriter012
6

Given,

In △MNO,

⇒∠M=45°

⇒ ∠O=30

By Angle sum property,

⇒∠M + ∠N + ∠O = 180°

⇒45 + 30 + ∠N = 180°

⇒∠N = 180 - 75

⇒∠N = 105°

Let,

MN = o

MO = n

NO = m

By Sine rule,

 \frac{m}{ \sin(m) }  =  \frac{n}{ \sin(n) }  =  \frac{o}{ \sin(o) }

Given, MN = o = 6 units.

To find : NO

 \frac{m}{ \sin(45) }  =  \frac{6}{ \sin(30) }  \\  \\ m = 6 \times  \frac{ \sin(45) }{ \sin(30 ) } \\  \\  m = 6 \times 2  \times  \frac{1}{ \sqrt{2} }  = 6 \sqrt{2}

To find : MO

 \frac{n}{ \sin(n) }  =  \frac{o}{  \sin(o)  }

 \frac{n}{ \sin(105) }  =  \frac{6}{ \sin(30) }  \\  \\  \frac{n}{ \sin(105) }  = 12 \\  \\

n = 12 \times  \sin(105)  \\  \\ n = 12 \times  \frac{ \sqrt{3} + 1 }{2 \sqrt{2} }  \\  \\  n = 3 \sqrt{2}  \times(  \sqrt{3}  + 1) \\  \\ n = 3 \times  (\sqrt{6}  +  \sqrt{2} )

Therefore,

NO = 6 \sqrt{2}  \\ MO = 3( \sqrt{6}  +  \sqrt{2} )

Similar questions