Given: O is 5he centre of circle. angle BCO = m°, angle BAC = n°. find: The value of m + n.
Attachments:
![](https://hi-static.z-dn.net/files/d6e/2186f500dbb77ec971829d5b7ab46d97.jpg)
Answers
Answered by
1
value of m + n. = 90°
Step-by-step explanation:
O is the centre of circle.
=> ∠BOC = 2∠BAC ( Angle subtended by chord at center & arc)
=> ∠BOC = 2n
BO = CO ( Radius)
=> ∠CBO = ∠BCO
=> ∠CBO = m
in Δ BOC
∠BOC + ∠CBO + ∠BCO = 180°
=> 2n + m + m = 180°
=> 2n + 2m = 180°
=> 2(n + m) = 180°
=> n + m = 90°
=> m + n = 90°
value of m + n. = 90°
Learn more:
130°,m(arc EF)
https://brainly.in/question/14623870
in the given figure,o is the centre of a circle and angle ACB=30°.find ...
https://brainly.in/question/8505520
Similar questions